Linear algebra - Practice problems for final

1. Diagonalize the matrix $\left[\begin{array}{ccc}3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3\end{array}\right]$.

Solution.

To find the eigenvalues, compute

$$
\operatorname{det}\left[\begin{array}{ccc}
3-\lambda & 0 & 0 \\
-3 & 4-\lambda & 9 \\
0 & 0 & 3-\lambda
\end{array}\right]=(3-\lambda)(4-\lambda)(3-\lambda) .
$$

So the eigenvalues are $\lambda=3$ and $\lambda=4$.
We can find two linearly independent eigenvectors $\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$ corresponding to the eigenvalue 3 , and one eigenvector $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ with eigenvalue 4 . The diagonalized form of the matrix is

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
-3 & 4 & 9 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -3 \\
-3 & 1 & 9
\end{array}\right] .
$$

Note that if you chose different eigenvectors, your matrices will be different. The middle matrix should have entries $3,3,4$ in some order, and you should multiply out the product to make sure you have the right answer.
2. Find a formula for $\left[\begin{array}{ll}1 & -6 \\ 2 & -6\end{array}\right]^{k}$ by diagonalizing the matrix.

Solution. The eigenvalues are $-3,-2$, and the diagonalized form of the matrix is

$$
\left[\begin{array}{ll}
1 & -6 \\
2 & -6
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right]
$$

It follows that

$$
\left[\begin{array}{ll}
1 & -6 \\
2 & -6
\end{array}\right]^{k}=\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
(-3)^{k} & 0 \\
0 & (-2)^{k}
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right] .
$$

3. Let $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $C=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be two bases for \mathbf{R}^{2} such that $\mathbf{b}_{1}=6 \mathbf{c}_{1}-2 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=9 \mathbf{c}_{1}-4 \mathbf{c}_{2}$.
(a) Find the change of coordinates matrix from B to C.
(b) If the vector \mathbf{v} has coordinate vector $\mathbf{v}_{B}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$, find \mathbf{v}_{C}.

Solution.
(a) The change of coordinate matrix from B to C is $\left[\begin{array}{cc}6 & 9 \\ -2 & -4\end{array}\right]$. Note that for instance the fact that

$$
\left[\begin{array}{cc}
6 & 9 \\
-2 & -4
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2
\end{array}\right]
$$

corresponds to the statement that the coordinate vector of \mathbf{b}_{1} relative to the basis B is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, whereas relative to the basis C it is $\left[\begin{array}{c}6 \\ -2\end{array}\right]$.
(b) $\mathbf{v}_{C}=\left[\begin{array}{cc}6 & 9 \\ -2 & -4\end{array}\right]\left[\begin{array}{c}-3 \\ 2\end{array}\right]=\left[\begin{array}{c}0 \\ -2\end{array}\right]$.
4. Find the projection of $\mathbf{b}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 1\end{array}\right]$ onto the subspace $W=\mathrm{sp}\left(\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right)$ of \mathbf{R}^{4}.

Solution. First find the orthogonal complement of W. This is the nullspace of the matrix $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$. A basis for this nullspace (found by row reduction) is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right]\right\} .
$$

Now we need to find the coordinate vector of \mathbf{b} relative to the basis

$$
\left\{\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

Again, by row reduction, we find the coordinate vector $\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 1 \\ 2 / 3\end{array}\right]$. To find the projection of \mathbf{b} onto W we only take the part of the coordinate vector that corresponds to basis elements in W. We get

$$
\mathbf{b}_{W}=\frac{-2}{3}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
-1 / 3 \\
1 / 3
\end{array}\right] .
$$

5. Find the projection matrix onto the subspace $W=\mathrm{sp}\left(\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 1\end{array}\right]\right)$ of \mathbf{R}^{4}. Use this to compute the projection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right]$ onto W.

Solution. Let $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]$. The projection matrix is $A\left(A^{T} A\right)^{-1} A^{T}$. Computing this we get

$$
A\left(A^{T} A\right)^{-1} A^{T}=\frac{1}{17}\left[\begin{array}{cccc}
14 & 1 & 5 & -4 \\
1 & 11 & 4 & 7 \\
5 & 4 & 3 & 1 \\
-4 & 7 & 1 & 6
\end{array}\right]
$$

The projection of $\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right]$ onto W is then

$$
\left[\begin{array}{cccc}
14 & 1 & 5 & -4 \\
1 & 11 & 4 & 7 \\
5 & 4 & 3 & 1 \\
-4 & 7 & 1 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]=\frac{1}{17}\left[\begin{array}{c}
21 \\
27 \\
16 \\
11
\end{array}\right]
$$

6. Find the best fit line $y=m x+c$ through the data points $(0,0),(1,1),(2,3)$.

Solution. Finding a line $y=m x+c$ through those points amounts to solving the system

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
m \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right] .
$$

This system is inconsistent (since there is no line through those points), and to find the best fit line, we need to project the vector $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$ onto the column space $W=\mathrm{sp}\left(\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)$ of the matrix. The projection is

$$
\mathbf{b}_{W}=\frac{3}{2}\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+\frac{-1}{6}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 6 \\
8 / 6 \\
17 / 6
\end{array}\right] .
$$

The best fit line is given by the solution of

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
m \\
c
\end{array}\right]=\left[\begin{array}{c}
-1 / 6 \\
8 / 6 \\
17 / 6
\end{array}\right],
$$

which is $m=3 / 2, c=-1 / 6$.

